SIES College of Arts, Science and Commerce

Sion(W), Mumbai-400 022.

QUESTION BANK

(FOR STUDENTS ENROLLED IN THE YEAR 2014-15 & LATER)

Class: F.Y.B.Sc. Sub

Subject: MATHEMATICS

Paper: II

Sem: II

Title of Paper: LINEAR ALGEBRA

UNIT I: SYSTEM OF LINEAR EQUATIONS AND MATRICES:

DEFINITIONS:

1. Linear equation	2. System of Linear equations	3. Homogeneous System of
(in n unknowns)		Linear Equations
4. Non-Homogeneous System of	5. Product of Matrices	6. Scalar Matrix
Linear Equations		
7. Diagonal Matrix	8. Upper Triangular Matrix	9. Lower Triangular Matrix
10. Symmetric Matrix	11. Skew- Symmetric Matrix	12. Invertible Matrix
13. Transpose of a Matrix	14. Zero Row	15. Non-Zero Row
16. Pivot(leading coefficient)	17. Row Echelon Form of a Matrix	18. Solution of a linear system
19. Trivial solution of a system	20. Non-trivial solution of a system	21. Row - equivalent matrices

PROBLEMS:

<u>TYPE I (Converting to row echelon form):</u>

Convert the following matrices into row echelon matrices:

$ (a) \begin{bmatrix} 1 & -3 & 3 \\ 4 & 7 & 12 \\ 2 & 5 & 6 \end{bmatrix} $	(b) $\begin{bmatrix} 5 & 2 & -7 & 7 \\ 3 & 1 & -3 & 5 \\ 4 & 2 & -8 & 20 \end{bmatrix}$	(c) $\begin{bmatrix} 1\\3\\12\\0 \end{bmatrix}$	$ \begin{array}{r} 0 & -3 \\ 5 & 1 \\ 20 & 4 \\ 4 \end{array} $
$(d)\begin{bmatrix}1&2\\-3&5\end{bmatrix}$	$(e) \begin{bmatrix} 1 & 2 & -5 \\ 4 & 8 & 10 \end{bmatrix}$	$(f) \begin{bmatrix} 2\\ 0\\ 14 \end{bmatrix}$	$\begin{bmatrix} 15 & 3 \\ 4 \\ 0 \\ 10 \end{bmatrix}$.

<u>TYPE II (Solving systems using Gaussian Elimination Method):</u>

Solve the following system of linear equations. Also, give the geometric interpretation of the solution sets.

(a)	x - 2y + 3z = 1;	(b)	2x + 3y - z = 0;	(c)	5x + 3y + 7z - 4 = 0;
	3x + y - 2z = 5;		x + y + z = 0.		3x + 26y + 2z - 9 = 0;
	5x - 3y + 4z = 7.				7x + 2y + 10z - 5 = 0.
(d)	x + 2y - z = 3;	(e)	x + 7y - 2 = 0;	(f)	x + y + z = 3;
. ,	3x - y + 2z = 1;		3x + 21y - 1 = 0.	.,	x + 2y + 2z = 5;
	2x - 2y + 3z = 2;				3x + 4y + 4z = 12.
	x - y + z = -1.				

<u>TYPE III</u>(Finding Parametric Equations):

- 1. Find parametric equations of line passing through the following points:
 - (a) (2,-4), (-3,-1) (b) (1,-1,0), (2,0,-7)(c) $(3,0,-\frac{7}{3}), (0,\frac{1}{2},-1)$ (d) (1,-3), (-2,6).
- 2. Find the parametric equations of plane passing through the following points:
 - (a) (1,-1,0), (2,0,-7), (0,0,-1) (b) (1,2,3), (2,4,6), (0,0,1)(c) (1,0,0), (0,1,0), (0,0,1) (d) (1,1,1), (0,1,1), (0,0,1).

PROPOSITIONS:

- 1. If *A* is an $m \times p$ matrix and *B* is a $p \times n$ matrix then prove that $(AB)^T = B^T A^T$.
- 2. If *A* and *B* are invertible matrices then prove that $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. Prove that matrix multiplication is associative. i.e., if *A* is an $m \times l$ matrix, *B* is an $l \times p$ matrix and *C* is a $p \times n$ matrix then (AB)C = A(BC).
- 4. Prove that any system of *m* homogeneous linear equations in *n* unknowns has a non-trivial solution if m < n.
- 5. Prove that any matrix is row equivalent to a matrix in row echelon form.
- 6. Prove that for every square matrix *A* over \mathbb{R} , $A + A^t$ is a symmetric matrix and $A A^t$ is a skew-symmetric matrix.
- 7. Prove that if the determinant of the coefficient matrix of a homogeneous system of two linear equations in two unknowns is non-zero then the system has only trivial solution.
- 8. Prove that a necessary and sufficient condition for the sum of two solutions or a scalar multiple of a solution to be a solution of the same system of linear equations is that the system is homogeneous.

MISCELLANEOUS:

- 1. Give the geometric interpretation of all possible solution sets of *m* linear equations in *n* unknowns when (i) m = 1, n = 2, (ii) m = 2, n = 2, (iii) m = 2, n = 3, (iv) m = 3, n = 2, (v) m = n = 3.
- 2. If *A* and *B* are $n \times n$ symmetric matrices over \mathbb{R} then prove that A + B and αA are symmetric for every $\alpha \in \mathbb{R}$.
- 3. Under what condition would a diagonal matrix, a scalar matrix and an upper triangular matrix be invertible?
- 4. For the system x y = 3, 2x + 3y = 4, 3x + 2y = k, using Gaussian elimination method, find the real value k such that the given system has a solution. Hence, solve the given system.
- 5. Let *A* be an $n \times n$ matrix such that A^3 is zero matrix. Prove that I A is invertible where *I* is the $n \times n$ identity matrix.
- 6. Using parametric equations, check whether the points (1,2,4), (0, -1,2) and (-1, -4,0) are collinear.
- 7. Let *P* be the plane passing through the point A(1,2,3) and perpendicular to the vector n = (0,2,-1). Let *l* be the line passing through B(2,4,1) in the direction of *n*. Find the point of intersection of plane *P* and line *l*.
- 8. If *A* and *B* are $n \times n$ matrices over \mathbb{R} such that AB = I where *I* is $n \times n$ identity matrix then prove that BA = I.
- 9. Let $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \forall \theta \in \mathbb{R}$. Prove that $R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2) \quad \forall \theta_1, \theta_2 \in \mathbb{R}$.
- 10. Using parametric equations of line and plane, prove that the distance of a point $P(x_1, y_1, z_1)$ from a plane ax + by + cz + d = 0 is $\frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}}$.

UNIT II: VECTOR SPACES: DEFINITIONS:

- Vector Space overℝ.
 Linear Span of a non-empty subset of a Vector Space
- 7. Linear Dependent Subset of
- a Vector Space.
- Vector Subspace
 Generating Set of a Vector Space
- Linear Combination of vectors
 Linear Independent Subset of a Vector Space

PROBLEMS:

1.

<u>TYPE I</u>(Proving the given spaces as Vector spaces and subspaces)

Proving that the following are Vector spaces and Vector Subspaces over \mathbb{R} :

Vector Space	Vector Subspace(Non Trivial)		
\mathbb{R}^{n}	1. Any Line passing through the origin		
(alsofor	2. Any Plane passing through the origin		
n = 2,3 in particular)	3. Space of solutions of <i>m</i> homogeneous linear equations in <i>n</i>		
	unknowns.		
$\mathbb{R}[x]$	$P_n[x]$		
$M_{m imes n}(\mathbb{R})$	1. Space of all upper triangular matrices ($form = n = 2,3$)		
	2. Space of all lower triangular matrices ($form = n = 2,3$)		
	3. Space of all diagonal matrices ($form = n = 2,3$)		
	4. Space of all symmetric matrices ($form = n = 2,3$)		
	5. Space of all skew-symmetric matrices ($form = n = 2,3$)		
$F(X,\mathbb{R})$	$C(X, \mathbb{R}) :=$ Space of all continuous real valued functions defined on X		
where $X \neq \phi$			

- 2. Check whether the following are Vector Spaces over \mathbb{R} : 1. $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1, x_2, x_3 \text{ are rationals }\}$ wrt usual addition and scalar multiplication as in \mathbb{R}^3 . 2. $V = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 = 2x_2 + x_3\}$ wrt usual addition and scalar multiplication as in \mathbb{R}^2 . 3. V = Set of all real sequences with first term equal to 1.i.e., $V = \{(x_n) | (x_n) \text{ is a real sequence with } x_1 = 1\}$ wrt componentwise addition and scalar multiplication. 4. V = Set of all real sequences with first term equal to 0.i.e., $V = \{(x_n) | (x_n) \text{ is a real sequence with } x_1 = 0\}$ wrt componentwise addition and scalar multiplication.
- 3. Check whether the following are vector subspaces of the given Vector Spaces over \mathbb{R} :
 - 1. $W = \{(x, y, z) \in \mathbb{R}^3 | z = x + y + 1\}$ of \mathbb{R}^3
 - 2. $W = \{(x, 0, z) \in \mathbb{R}^3 | x, z \in \mathbb{R} \}$ of \mathbb{R}^3
 - 3. $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + x_3 \neq 0\}$ of \mathbb{R}^3 .
 - 4. $W = \{f: X \to \mathbb{R} | f(x_0) = 0\}$ of $F(X, \mathbb{R})$.(Note that x_0 is fixed in $X \neq \phi$).
 - 5. $W = \{A \in M_2(\mathbb{R}) | AB = BA\}$ of $M_2(\mathbb{R})$. (Note that B is a fixed matrix in $M_2(\mathbb{R})$).
 - 6. $W = \{(x, y, z) \in \mathbb{R}^3 | z = 2x y\}$ of \mathbb{R}^3 .
- 4. Give an example to show that $W_1 \cup W_2$ may not be a vector subspace of a vector space V even if W_1 and W_2 are subspaces of V.

<u>TYPE II</u> (Expressing a vector as a linear combination)

1. Express the vector v as a linear combination of the other given vectors: 1. $v = (1,3), v_1 = (1,2), v_2 = (-1,2)$ 2. $v = (5,3,-1), v_1 = (2,0,0), v_2 = (0,1,-1), v_3 = (1,0,2)$ 3. $v = 1 + 2t + 3t^2, v_1 = 1, v_2 = 1 + t, v_3 = 1 + t^2$ 4. $v = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, v_4 = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$

2. Check whether

1. (1,2,3) can be written as a linear combination of (1,0,1) and (1,1,1).

2. (1,2,4,5) can be written as a linear combination of the vectors (1,0,0,0), (0,1,0,0) and (0,1,1,0).

TYPE III(Problems involving Linear Spans, Generating Sets)

- 1. Find the linear span of the given subsets of the given Vector Spaces over \mathbb{R} :
 - 1. $S = \{(1,0), (-2,1)\}$ of \mathbb{R}^2
 - 2. $S = \{(1,0,0,0), (0,1,1,0)\}$ of \mathbb{R}^4
 - 3. $S = \{ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \}$ of $M_2(\mathbb{R})$
 - 4. $S = \{1, 1 + 2x, 1 2x + x^2 + x^3, 2x^3\}$ of $P_3[x]$.
 - Show that $S = \{(1,1), (-1,3)\}$ generates \mathbb{R}^2 .
- 2. 3. Check whether $\{(1,0,0), (0,1,1), (2,3,1)\}$ generates \mathbb{R}^3 .
- 4. Write down a subset of $M_2(\mathbb{R})$ that generates $M_2(\mathbb{R})$.
- 5. Find the subspace of \mathbb{R}^3 generated by {(1,0,0), (1,1,0), (1,0,1)}.

TYPE IV(Problems involving Linear Independence/Dependence)

- 1. Determine whether the following are linearly dependent/independent in the given vector spaces: 1. $\{(1,1), (-1,1), (0,3)\}$ in \mathbb{R}^2 .
 - 2. { (2,0,0) } in \mathbb{R}^3 .

3. $\{1 - x, x(1 - x), 1 - x^2\}$ in $P_2[x]$.

- 4. $\{(-1,1,1), (2,1,1), (1,2,2)\}$ in \mathbb{R}^3 .
- 5. $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 5 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 10 & 2 \end{bmatrix} \right\}$ in $M_2(\mathbb{R})$.
- 6. $\{\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\}$ in $M_2(\mathbb{R})$.

PROPOSITIONS

- 1. Let V be a vector space over \mathbb{R} and W be a non empty subset of V. Prove that W is a vector subspace of V iff α . $w_1 + \beta$. $w_2 \in W \forall \alpha, \beta \in \mathbb{R}$ and $\forall w_1, w_2 \in W$.
- 2. Prove that the set of all solutions of a homogeneous system of *m* linear equations in *n* unknowns is a vector subspace of \mathbb{R}^n .
- 3. Let W_1 and W_2 be vector subspaces of a vector space V over \mathbb{R} . Prove that $W_1 \cap W_2$ is a vector subspace of V.
- 4. Prove that arbitrary intersection of vector subspaces of a vector space is a vector subspace.
- 5. Let W_1 and W_2 be vector subspaces of a vector space V over \mathbb{R} . Prove that $W_1 \cup W_2$ is a subspace of V iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 6. Let $S \neq \emptyset \subseteq V$, a vector space over \mathbb{R} . Prove that the Linear Span of *S i.e.*, L(S) is a vector subspace of *V*.
- 7. Prove that a set of vectors in a vector space is linearly dependent iff atleast one of the vectors in the set is a linear combination of the other vectors.

MISCELLANEOUS:

- 1. Show that the set of all polynomials over \mathbb{R} of degree equal to 5 does not form a vector space over \mathbb{R} under usual addition and scalar multiplication.
- 2. Show that every subset of a finite linearly independent subset of a vector space over \mathbb{R} is linearly independent.
- 3. Show that every superset of a finite linearly dependent subset of a vector space over \mathbb{R} is linearly dependent.
- 4. Let $S = \{v_1, v_2, ..., v_n\}$ be a linearly independent subset of a vector space over \mathbb{R} . Prove that for any vector v_i , $S \cup \{v\}$ is linearly dependent iff $v \in L(S)$.

UNIT III: BASIS AND LINEAR TRANSFORMATION:

DEFINITIONS:

- 1. Basis of a vector space
- 3. Maximal linearly independent set
- 5. Dimension of a vector space
- 7. Linear Transformation
- 9. Image of a linear transformation
- 11. Rank of a linear transformation
- 2. Finitely generated vector space
- 4. Minimal generating set
- 6. Sum of vector subspaces
- 8. Kernel of a linear transformation
- 10. Nullity of a linear transformation
- 12. Matrix of a linear transformation

STATEMENT:

Rank-Nullity Theorem: Let V be a finitely generated vector space over \mathbb{R} and W be any vector space over \mathbb{R} . If $T: V \to W$ is a linear transformation then Rank(T) + Nullity(T) = dim(V)

PROBLEMS:

TYPE I (Checking for Basis):

Check whether the following sets form a basis for the given vector spaces:

- $\{(1,0), (0,1)\}$ for \mathbb{R}^2 i.
- $\{(1,0,0), (1,1,0), (0,1,1)\}$ for \mathbb{R}^3 ii.
- iii. $\{1, 1 + t, 1 + t^2\}$ for $P_2[t]$
- $\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}1&1\\0&0\end{pmatrix},\begin{pmatrix}1&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\} \text{ for } M_2(\mathbb{R})$ iv.
- $\{(1,0,0), (1,1,0), (5,-1,0)\}$ for \mathbb{R}^3
- v.
- vi. {(1,0), (1,1), (-1,2)} for \mathbb{R}^2

TYPE II(Sum of vector subspaces):

Find the dimension of $W_1 + W_2$ where

- $W_1 = x axis$, $W_2 = y axis$ i.
- $W_1 = x axis, W_2 = xy$ plane ii.
- iii. $W_1 = xy$ plane, $W_2 = yz$ plane
- iv. $W_1 = xy$ plane, $W_2 = xz$ plane
- $W_1 = \{0\}, W_2 = \mathbb{R}^2$ v.
- $W_1 = \{(x, x) \mid x \in \mathbb{R}\}, W_2 = x axis$ vi.

TYPE II (Checking for Linear Transformations):

Check whether following are linear transformations:

i) $T: \mathbb{R} \to \mathbb{R}$ defined as T(x) = 2xii) $T: \mathbb{R} \to \mathbb{R}$ defined as T(x) = 2x+1iii) $T: \mathbb{R} \to \mathbb{R}$ defined as $T(x) = x^2$ iv) $T: \mathbb{R}^2 \to \mathbb{R}^4$ defined as T(x, y) = (x + y, 2x, 2y, x - y)v) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x, y) = (x + 2y, 2x, 2)vi) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x, y) = (x - y, |x|)vii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x, y) = (2x + y, 2x, 0)viii) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $T(x, y, z) = (x - 3y, x^2, 2y + z)$ ix) $T: C[0,1] \to \mathbb{R}$ defined as $T(f) = \int_0^1 f$ x) $T: C[0,1] \to \mathbb{R}$ defined as $T(f) = f(t_0)$ for some fixed t_0 in [0,1] xi) $T: P_5[t] \to P_5[t]$ defined as $T(f) = \frac{df}{dt}$ xii) $T: M_2[\mathbb{R}] \to M_2[\mathbb{R}]$ defined as T(A) = 2A

<u>TYPE III (Finding Kernels):</u>

Find the Kernels for the following Linear Transformations: i) $T: \mathbb{R}^2 \to \mathbb{R}^4$ defined as T(x, y) = (x + y, 2x, 2y, x - y). ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x, y) = (2x + y, 2x, 0). iii) $T: P_5[t] \to P_5[t]$ defined as $T(f) = \frac{df}{dt}$. iv) $T: M_2[\mathbb{R}] \to M_2[\mathbb{R}]$ defined as T(A) = 2A. v) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (2x + y, x - y + z, 3x + z). vi) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (2x + y, 2x, 0). vii) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (2x + y, 2x, 0).

<u>TYPE IV</u>(Finding Image spaces):

Find the Image space for the following Linear Transformations: i) $T: \mathbb{R}^2 \to \mathbb{R}^4$ defined as T(x, y) = (x + y, x, 0 y). ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x, y) = (2x + y, 0, 0). iii) $T: P_5[t] \to P_5[t]$ defined as $T(f) = \frac{df}{dt}$. iv) $T: M_2[\mathbb{R}] \to M_2[\mathbb{R}]$ defined as T(A) = 2A. v) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (2x + y, x - y + z, 3x + z). vi) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (2x + y, 2x, 0). vii) $T: \mathbb{R}^3 \to \mathbb{R}$ defined as T(x, y, z) = 0.

<u>TYPE V</u>(Verifying Rank – Nullity Theorem):

Verify the rank-nullity theorem for the following linear transformations:

- i. $T: \mathbb{R}^3 \to \mathbb{R}$ defined as T(x, y, z) = 0.
- ii. $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as T(x, y, z) = (x, y).
- iii. $T: \mathbb{R}^3 \to \mathbb{R}$ defined as T(x, y, z) = x.
- iv. $T: \mathbb{R}^3 \to \mathbb{R}$ defined as T(x, y, z) = y.
- V. $T: P_2[t] \to P_2[t]$ defined as $T(f) = \frac{df}{dt}$

<u>TYPE VI</u> (Finding Matrices associated to Linear Transformations):

- i) Find matrix with respect to standard bases for the linear transformations given in TYPE III i, ii, v, vi, vii.
- ii) Find matrix for the linear transformation given in TYPE III iii with respect to basis $\{1, t, t^2, t^3, t^4, t^5\}$.
- iii) Find matrix for the linear transformation given by TYPE III iv with respect to basis
 - $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$

PROPOSITIONS:

- 1. Prove that every basis of a finitely generated vector space is maximal linearly independent.
- 2. Prove that every maximal linearly independent subset of a vector space is a basis of the vector space.
- 3. Prove that every basis of a finitely generated vector space is minimal generating.
- 4. Prove that every minimal generating subset of a finitely generated vector space is a basis of the vector space.
- 5. Prove that any set of n + 1 vectors in a vector space with n elements in a basis is linearly dependent.

- 6. Prove that any two bases of a vector space have the same number of elements.
- 7. Prove that any *n* linearly independent vectors in an *n* dimensional vector space forms a basis of the vector space.
- 8. Prove that if W_1 and W_2 are vector subspaces of a vector space V over \mathbb{R} then $W_1 + W_2$ is a vector subspace of V.
- 9. Prove that if W_1 and W_2 are vector subspaces of a vector space V over \mathbb{R} then $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
- 10. Let *V* and *W* be vector spaces. Let $T: V \rightarrow W$ be a linear transformation. Prove that *Ker T* is a subspace of *V* and *Im T* is a subspace of *W*.
- 11. Let *V* and *W* be vector spaces. Let $\{v_1, v_2, ..., v_n\}$ be a basis of *V*. Let $w_1, w_2, ..., w_n$ be any arbitrary vectors of *W*. Prove that there exits a unique linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for i = 1, 2, ..., n.

MISCELLANEOUS:

- 1. Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,0) = (2,3) and T(0,1) = (3,2).
- 2. Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,0) = (2,3) and T(0,1,0) = (3,2) and T(0,0,1) = (1,2).
- 3. If $T: \mathbb{R}^2 \to \mathbb{R}$ is a linear transformation such that T(0,1) = (1,2) and T(1,0) = (1,4) then find T(2,3).
- 4. Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that the matrix of T wrt the standard bases is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 5. Prove that any linear transformation maps zero vector to zero vector.
- 6. Find the rank of the linear transformation $T: P_2[t] \rightarrow P_2[t]$ defined as $T(f) = \frac{df}{dt}$ using the rank-nullity theorem.
- 7. What is the dimension of the zero vector space i.e., V={0}? Justify.
- 8. Give a basis of the vector space \mathbb{R} over \mathbb{R} . Hence, write dimension of \mathbb{R} over \mathbb{R} .