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UNIT I: SYSTEM OF LINEAR EQUATIONS AND MATRICES: 
 
DEFINITIONS: 

 
1. Linear equation 
(in n unknowns) 

2. System of Linear equations 3. Homogeneous System of 
Linear Equations 

4. Non-Homogeneous System of 
Linear Equations 

5. Product of Matrices 6. Scalar Matrix 

7. Diagonal Matrix  8. Upper Triangular Matrix  9. Lower Triangular Matrix  
10. Symmetric Matrix 11. Skew- Symmetric Matrix  12. Invertible Matrix 
13. Transpose of a Matrix 14. Zero Row 15. Non-Zero Row 
16. Pivot(leading coefficient) 17. Row Echelon Form of a Matrix 18. Solution of a linear system 
19. Trivial solution of a system 20. Non-trivial solution of a system 21. Row - equivalent matrices 

 

 
PROBLEMS: 

 TYPE I (Converting to row echelon form): 
Convert the following matrices into row echelon matrices: 

(a)[
1 −3 3
4
2

7 12
5 6

] (b)[
5 2 −7 7
3
4

1 −3 5
2 −8 20

] (c)[

1 0 −3
3

12
9

5 1
20
15

4
3

] 

(d)[
1 2

−3 5
] (e)[

1 2 −5
4 8 10

] (f)[
2 4
0

14
0

10
]. 

 
 

  
TYPE II (Solving systems using Gaussian Elimination Method): 

Solve the following system of linear equations. Also, give the geometric interpretation of the solution sets. 
 
(a) 𝑥 − 2𝑦 + 3𝑧 = 1; 

3𝑥 + 𝑦 − 2𝑧 = 5; 
5𝑥 − 3𝑦 + 4𝑧 = 7. 

(b) 2𝑥 + 3𝑦 − 𝑧 = 0; 
𝑥 + 𝑦 + 𝑧 = 0. 

 

(c) 5𝑥 + 3𝑦 + 7𝑧 − 4 = 0; 
3𝑥 + 26𝑦 + 2𝑧 − 9 = 0; 
7𝑥 + 2𝑦 + 10𝑧 − 5 = 0. 

(d) 𝑥 + 2𝑦 − 𝑧 = 3; 
3𝑥 − 𝑦 + 2𝑧 = 1; 

2𝑥 − 2𝑦 + 3𝑧 = 2; 
𝑥 − 𝑦 + 𝑧 = −1. 

(e) 𝑥 + 7𝑦 − 2 = 0; 
3𝑥 + 21𝑦 − 1 = 0. 

(f) 𝑥 + 𝑦 + 𝑧 = 3; 
𝑥 + 2𝑦 + 2𝑧 = 5; 

3𝑥 + 4𝑦 + 4𝑧 = 12. 
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TYPE III(Finding Parametric Equations): 
 
1. 

 
Find parametric equations of line passing through the following points: 

 (a) (2, −4), (−3, −1) (b) (1, −1, 0), (2, 0, −7) 

(c) 
(3,0, −

7

3
) , (0,

1

2
, −1) 

(d) (1, −3), (−2, 6). 

    
 

2. Find the parametric equations of plane passing through the following points: 
 (a) (1, −1, 0), (2, 0, −7), (0,0, −1) (b) (1,2,3), (2,4,6), (0,0,1) 

(c) (1,0,0), (0,1,0), (0,0,1) (d) (1,1,1), (0,1,1), (0,0,1). 
 

  

PROPOSITIONS: 
1. If 𝐴 is an 𝑚 × 𝑝 matrix and 𝐵 is a 𝑝 × 𝑛 matrix then prove that (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 .  
2. If 𝐴 and 𝐵 are invertible matrices then prove that (𝐴𝐵)−1 = 𝐵−1𝐴−1. 
3. Prove that matrix multiplication is associative. i.e., if  𝐴 is an 𝑚 × 𝑙 matrix, 𝐵 is an 𝑙 × 𝑝 matrix and 𝐶 is a 

𝑝 × 𝑛 matrix then (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).  
4. Prove that any system of 𝑚 homogeneous linear equations in 𝑛 unknowns has a non-trivial solution if 

𝑚 < 𝑛. 
5. Prove that any matrix is row equivalent to a matrix in row echelon form. 
6. Prove that for every square matrix 𝐴 over ℝ, 𝐴 + 𝐴𝑡 is a symmetric matrix and 𝐴 − 𝐴𝑡 is a skew-

symmetric matrix. 
7. Prove that if the determinant of the coefficient matrix of a homogeneous system of two linear equations 

in two unknowns is non-zero then the system has only trivial solution. 
8. Prove that a necessary and sufficient condition for the sum of two solutions or a scalar multiple of a 

solution to be a solution of the same system of linear equations is that the system is homogeneous. 
 
MISCELLANEOUS: 

1. Give the geometric interpretation of all possible solution sets of 𝑚 linear equations in 𝑛 unknowns 
when (i) 𝑚 = 1, 𝑛 = 2, (ii) 𝑚 = 2, 𝑛 = 2, (iii) 𝑚 = 2, 𝑛 = 3, (iv) 𝑚 = 3, 𝑛 = 2, (v) 𝑚 = 𝑛 = 3.  

2. If 𝐴 and 𝐵 are 𝑛 × 𝑛 symmetric matrices over ℝ then prove that 𝐴 + 𝐵 and 𝛼𝐴 are symmetric for every 
𝛼 ∈ ℝ. 

3. Under what condition would a diagonal matrix, a scalar matrix and an upper triangular matrix be 
invertible? 

4. For the system 𝑥 − 𝑦 = 3, 2𝑥 + 3𝑦 = 4, 3𝑥 + 2𝑦 = 𝑘, using Gaussian elimination method, find the real 
value 𝑘 such that the given system has a solution. Hence, solve the given system. 

5. Let 𝐴 be an 𝑛 × 𝑛 matrix such that 𝐴3 is zero matrix. Prove that 𝐼 − 𝐴 is invertible where 𝐼 is the 𝑛 × 𝑛 
identity matrix. 

6. Using parametric equations, check whether the points (1,2,4), (0, −1,2) and (−1, −4,0) are collinear. 
7. Let 𝑃 be the plane passing through the point 𝐴(1,2,3) and perpendicular to the vector 𝑛 = (0,2, −1). Let 

𝑙 be the line passing through 𝐵(2,4,1) in the direction of 𝑛. Find the point of intersection of plane 𝑃 and 
line 𝑙. 

8. If 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices over ℝ such that 𝐴𝐵 = 𝐼 where 𝐼 is 𝑛 × 𝑛 identity matrix then prove that 
𝐵𝐴 = 𝐼. 

9. Let 𝑅(𝜃) =  [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] ∀𝜃 ∈ ℝ. Prove that 𝑅(𝜃1)𝑅(𝜃2) = 𝑅(𝜃1 + 𝜃2)   ∀𝜃1, 𝜃2 ∈ ℝ. 

10. Using parametric equations of line and plane, prove that the distance of a point 𝑃(𝑥1, 𝑦1, 𝑧1) from a 

plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is 
| 𝑎𝑥1+𝑏𝑦1+𝑐𝑧1+𝑑 |

√𝑎2+𝑏2+𝑐2
 . 
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UNIT II: VECTOR SPACES: 
DEFINITIONS: 
1. Vector Space overℝ. 2. Vector Subspace 3. Linear Combination of vectors 
4. Linear Span of a non-empty 
subset of a Vector Space 

5. Generating Set of a 
Vector Space 

6. Linear Independent Subset of a 
Vector Space 

7. Linear Dependent Subset of 
a Vector Space. 

  

 

  

PROBLEMS: 
 TYPE I(Proving the given spaces as Vector spaces and subspaces) 
1. Proving that the following are Vector spaces and Vector Subspaces over ℝ: 

Vector Space Vector Subspace(Non Trivial) 
ℝ𝑛 

(alsofor 
n = 2,3 in particular) 

1. Any Line passing through the origin 
2. Any Plane passing through the origin 
3. Space of solutions of 𝑚 homogeneous linear equations in 𝑛 

unknowns. 

ℝ[𝑥] 𝑃𝑛[𝑥] 
𝑀𝑚×𝑛(ℝ) 1. Space of all upper triangular matrices (𝑓𝑜𝑟𝑚 = 𝑛 = 2,3) 

2. Space of all lower triangular matrices  (𝑓𝑜𝑟𝑚 = 𝑛 = 2,3) 
3. Space of all diagonal matrices (𝑓𝑜𝑟𝑚 = 𝑛 = 2,3) 
4. Space of all symmetric matrices (𝑓𝑜𝑟𝑚 = 𝑛 = 2,3) 
5. Space of all skew-symmetric matrices (𝑓𝑜𝑟𝑚 = 𝑛 = 2,3) 

𝐹(𝑋, ℝ) 
where 𝑋 ≠ 𝜙 

𝒞(𝑋, ℝ) ≔Space of all continuous real valued functions defined on 𝑋 

 

2. Check whether the following are Vector Spaces over ℝ: 
1. 𝑉 = {(𝑥1, 𝑥2, 𝑥3)𝜖ℝ3|𝑥1, 𝑥2, 𝑥3 are rationals } wrt usual addition and scalar multiplication as in ℝ3. 

2. 𝑉 = {(𝑥1, 𝑥2)𝜖ℝ2|𝑥1 = 2𝑥2 + 𝑥3} wrt usual addition and scalar multiplication as inℝ2. 
3. 𝑉 = Set of all real sequences with first term equal to 1.  
i.e., 𝑉 = {(𝑥𝑛)|(𝑥𝑛) is a real sequence with 𝑥1 =1} wrt componentwise addition and scalar multiplication. 
4. 𝑉 = Set of all real sequences with first term equal to 0.  
i.e., 𝑉 = {(𝑥𝑛)|(𝑥𝑛) is a real sequence with 𝑥1 =0} wrt componentwise addition and scalar multiplication. 
 

3. Check whether the following are vector subspaces of the given Vector Spaces over ℝ: 
1. 𝑊 = {(𝑥, 𝑦, 𝑧) 𝜖ℝ3|𝑧 = 𝑥 + 𝑦 + 1} of ℝ3 
2. 𝑊 = {(𝑥, 0, 𝑧)𝜖ℝ3|𝑥, 𝑧 𝜖ℝ } of ℝ3 
3. 𝑊 = {(𝑥1, 𝑥2, 𝑥3)𝜖ℝ3|𝑥1 + 𝑥3 ≠ 0} of ℝ3. 
4. 𝑊 = {𝑓: 𝑋 → ℝ|𝑓(𝑥0) = 0} of 𝐹(𝑋, ℝ).(Note that 𝑥0 is fixed in 𝑋 ≠ 𝜙). 
5. 𝑊 = {𝐴𝜖𝑀2(ℝ)|𝐴𝐵 = 𝐵𝐴} of 𝑀2(ℝ). (Note that 𝐵 is a fixed matrix in 𝑀2(ℝ)). 
6. 𝑊 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑧 = 2𝑥 − 𝑦} of ℝ3. 
 

4. Give an example to show that 𝑊1 ∪ 𝑊2 may not be a vector subspace of a vector space 𝑉 even if 𝑊1 and 
𝑊2 are subspaces of 𝑉. 
 

 TYPE II (Expressing a vector as a linear combination) 
1. Express the vector 𝑣 as a linear combination of the other given vectors: 

1. 𝑣 = (1,3), 𝑣1 = (1,2), 𝑣2 = (−1,2) 
2.𝑣 = (5,3, −1), 𝑣1 = (2,0,0), 𝑣2 = (0,1, −1), 𝑣3 = (1,0,2) 
3. 𝑣 = 1 + 2𝑡 + 3𝑡2 , 𝑣1 = 1, 𝑣2 = 1 + 𝑡, 𝑣3 = 1 + 𝑡2  

4. 𝑣 = [
1 2
3 4

] , 𝑣1 = [
1 0
0 0

] , 𝑣2 = [
1 1
0 0

] , 𝑣3 = [
1 0
1 0

] , 𝑣4 = [
0 0
0 4

] 
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2. Check whether  
1. (1,2,3) can be written as a linear combination of (1,0,1) and (1,1,1). 
2. (1,2,4,5) can be written as a linear combination of the vectors (1,0,0,0), (0,1,0,0) and (0,1,1,0). 
 

 TYPE III(Problems involving Linear Spans, Generating Sets ) 
1. Find the linear span of the given subsets of the given Vector Spaces over ℝ: 

1. 𝑆 = {(1,0), (−2,1)} of ℝ2 

2. 𝑆 = {(1,0,0,0), (0,1,1,0)} of ℝ4 

3. 𝑆 = {[
1 0
1 1

] , [
1 0
0 1

] , [
0 0
1 0

]} of 𝑀2(ℝ) 

4. 𝑆 = {1, 1 + 2𝑥, 1 − 2𝑥 + 𝑥2 + 𝑥3 , 2𝑥3} of 𝑃3[𝑥]. 
2. Show that  𝑆 = {(1,1), (−1,3)} generates ℝ2. 
3. Check whether {(1,0,0), (0,1,1), (2,3,1)} generates ℝ3. 
4. Write down a subset of 𝑀2(ℝ) that generates  𝑀2(ℝ). 
5. Find the subspace of ℝ3generated by {(1,0,0), (1,1,0), (1,0,1)}. 

 
 TYPE IV(Problems involving Linear Independence/Dependence) 
1. Determine whether the following are linearly dependent/independent in the given vector spaces: 

1. {(1,1), (-1,1), (0,3) } in ℝ2. 
2. { (2,0,0) } in ℝ3. 
3. {1 − 𝑥, 𝑥(1 − 𝑥), 1 − 𝑥2} in 𝑃2[𝑥]. 
4. {(−1,1,1), (2,1,1), (1,2,2)} in ℝ3. 

5. {[
1 −1
0 2

] , [
0 2
5 0

] , [
1 3

10 2
]} in 𝑀2(ℝ). 

6. {[
1 1
1 1

] , [
1 1
1 0

] , [
1 1
0 0

] , [
1 0
0 0

]} in 𝑀2(ℝ). 

 

PROPOSITIONS 
1. Let V be a vector space over ℝ and W be a non empty subset of V. Prove that W is a vector subspace of V iff 

𝛼. 𝑤1 + 𝛽. 𝑤2𝜖 W ∀𝛼, 𝛽 𝜖 ℝ and ∀𝑤1, 𝑤2𝜖 W. 
2. Prove that the set of all solutions of a homogeneous system of 𝑚 linear equations in 𝑛 unknowns is a vector 

subspace of ℝ𝑛. 
3. Let 𝑊1 and 𝑊2 be vector subspaces of a vector space 𝑉 over ℝ. Prove that 𝑊1 ∩ 𝑊2 is a vector subspace of 𝑉. 
4. Prove that arbitrary intersection of vector subspaces of a vector space is a vector subspace. 
5. Let 𝑊1 and 𝑊2 be vector subspaces of a vector space 𝑉 over ℝ. Prove that 𝑊1 ∪ 𝑊2 is a subspace of 𝑉 iff 

𝑊1 ⊆ 𝑊2 or 𝑊2 ⊆ 𝑊1. 
6. Let 𝑆(≠ ∅) ⊆ 𝑉, a vector space over ℝ. Prove that the Linear Span of 𝑆 𝑖. 𝑒. , 𝐿(𝑆) is a vector subspace of 𝑉. 
7. Prove that a set of vectors in a vector space is linearly dependent iff atleast one of the vectors in the set is a 

linear combination of the other vectors. 
MISCELLANEOUS: 

1. Show that the set of all polynomials over ℝ of degree equal to 5 does not form a vector space over ℝ under 
usual addition and scalar multiplication. 

2. Show that every subset of a finite linearly independent subset of a vector space over ℝ is linearly independent. 

3. Show that every superset of a finite linearly dependent subset of a vector space over ℝ is linearly dependent. 

4. Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a linearly independent subset of a vector space over ℝ. Prove that for any vector 𝑣, 

𝑆 ∪ {𝑣} is linearly dependent iff 𝑣 ∈ 𝐿(𝑆). 
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UNIT III: BASIS AND LINEAR TRANSFORMATION: 
 
DEFINITIONS: 

 
1. Basis of a vector space 2. Finitely generated vector space 
3. Maximal linearly independent set 4. Minimal generating set 
5. Dimension of a vector space 6. Sum of vector subspaces 
7. Linear Transformation 8. Kernel of a linear transformation 
9. Image of a linear transformation 10. Nullity of a linear transformation 
11. Rank of a linear transformation 12. Matrix of a linear transformation 

 

 

STATEMENT: 
Rank-Nullity Theorem: Let V be a finitely generated vector space over ℝ and 𝑊 be any vector space over ℝ. If 
𝑇: 𝑉 → 𝑊 is a linear transformation then Rank(T) + Nullity(T) = dim(V) 
 
PROBLEMS: 

 TYPE I (Checking for Basis): 
 

Check whether the following sets form a basis for the given vector spaces: 
i. {(1,0), (0,1)} for ℝ2 
ii. {(1,0,0), (1,1,0), (0,1,1)} for ℝ3 
iii. {1, 1 + 𝑡, 1 + 𝑡2} for 𝑃2[𝑡] 
iv. {(

1 0
0 0

) , (
1 1
0 0

) , (
1 0
1 0

) , (
0 0
0 1

)} for 𝑀2(ℝ) 

v. {(1,0,0), (1,1,0), (5, −1,0)} for ℝ3 
vi. {(1,0), (1,1), (−1,2)} for ℝ2 

 
 

 TYPE II(Sum of vector subspaces): 
 

Find the dimension of 𝑊1 + 𝑊2 where  
i. 𝑊1 = 𝑥 - axis, 𝑊2 = 𝑦 - axis 
ii. 𝑊1 = 𝑥 - axis, 𝑊2 = 𝑥𝑦 plane 
iii. 𝑊1 = 𝑥𝑦 plane, 𝑊2 = 𝑦𝑧 plane 
iv. 𝑊1 = 𝑥𝑦 plane, 𝑊2 = 𝑥𝑧 plane 
v. 𝑊1 = {0}, 𝑊2 = ℝ2 
vi. 𝑊1 = {(𝑥, 𝑥)|  𝑥 ∈ ℝ}, 𝑊2 = 𝑥 – axis 

 
 

 TYPE II (Checking for Linear Transformations): 
 

Check whether following are linear transformations: 
i)𝑇: ℝ → ℝ defined as 𝑇(𝑥) = 2𝑥 
ii)𝑇: ℝ → ℝ defined as 𝑇(𝑥) = 2𝑥+1 
iii)𝑇: ℝ → ℝ defined as 𝑇(𝑥) = 𝑥2  
iv) 𝑇: ℝ2 → ℝ4 defined as 𝑇(𝑥, 𝑦)  =  (𝑥 + 𝑦, 2𝑥, 2𝑦, 𝑥 − 𝑦 ) 
v) 𝑇: ℝ2  → ℝ3 defined as 𝑇(𝑥, 𝑦)  =  (𝑥 + 2𝑦, 2𝑥, 2 ) 

vi) 𝑇: ℝ2 → ℝ2 defined as 𝑇(𝑥, 𝑦)  =  (𝑥 − 𝑦, │𝑥│ ) 

vii) 𝑇: ℝ2 → ℝ3defined as 𝑇(𝑥, 𝑦)  =  (2𝑥 + 𝑦, 2𝑥, 0 ) 
viii) 𝑇: ℝ3  → ℝ3 defined as 𝑇(𝑥, 𝑦, 𝑧)  =  (𝑥 − 3𝑦, 𝑥2, 2𝑦 + 𝑧 ) 

ix) 𝑇: 𝐶[0, 1]  → ℝ  defined as 𝑇(𝑓)  =  ∫ 𝑓
1

0
 

x) 𝑇: 𝐶[0, 1]  → ℝ  defined as 𝑇(𝑓)  =  𝑓(𝑡0) for some fixed 𝑡0in [0, 1] 
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xi) 𝑇: 𝑃5[𝑡]  → 𝑃5[𝑡] defined as 𝑇(𝑓)  =  
𝑑𝑓

𝑑𝑡
 

xii) 𝑇: 𝑀2[ℝ]  → 𝑀2[ℝ] defined as 𝑇(𝐴)  =   2𝐴 
 

  
 
TYPE III (Finding Kernels): 

 
Find the Kernels for the following Linear Transformations: 
i) 𝑇: ℝ2    → ℝ4defined as 𝑇(𝑥, 𝑦)  =  (𝑥 + 𝑦, 2𝑥, 2𝑦, 𝑥 − 𝑦 ). 

ii) 𝑇: ℝ2  → ℝ3defined as 𝑇(𝑥, 𝑦)  =  (2𝑥 + 𝑦, 2𝑥, 0 ). 

iii) 𝑇: 𝑃5[𝑡]  → 𝑃5[𝑡]  defined as 𝑇(𝑓)  =  
𝑑𝑓

𝑑𝑡
. 

iv) 𝑇: 𝑀2[ℝ]  → 𝑀2[ℝ]  defined as 𝑇(𝐴)  =   2𝐴. 
v) 𝑇: ℝ3  → ℝ3 defined as 𝑇(𝑥, 𝑦, 𝑧)  =  (2𝑥 + 𝑦, 𝑥 − 𝑦 + 𝑧, 3𝑥 + 𝑧 ). 
vi) 𝑇: ℝ3  → ℝ3defined as 𝑇(𝑥, 𝑦, 𝑧)  =  (2𝑥 + 𝑦, 2𝑥, 0 ). 
vii)𝑇: ℝ3 → ℝ defined as 𝑇(𝑥, 𝑦, 𝑧) = 0. 

           
TYPE IV(Finding Image spaces): 

Find the Image space for the following Linear Transformations: 
i) 𝑇: ℝ2    → ℝ4defined as 𝑇(𝑥, 𝑦)  =  (𝑥 + 𝑦, 𝑥, 0 𝑦 ). 
ii) 𝑇: ℝ2  → ℝ3defined as 𝑇(𝑥, 𝑦)  =  (2𝑥 + 𝑦, 0,0 ). 

iii) 𝑇: 𝑃5[𝑡]  → 𝑃5[𝑡]  defined as 𝑇(𝑓)  =  
𝑑𝑓

𝑑𝑡
. 

iv) 𝑇: 𝑀2[ℝ]  → 𝑀2[ℝ]  defined as 𝑇(𝐴)  =   2𝐴. 
v) 𝑇: ℝ3  → ℝ3 defined as 𝑇(𝑥, 𝑦, 𝑧)  =  (2𝑥 + 𝑦, 𝑥 − 𝑦 + 𝑧, 3𝑥 + 𝑧 ). 

vi) 𝑇: ℝ3  → ℝ3defined as 𝑇(𝑥, 𝑦, 𝑧)  =  (2𝑥 + 𝑦, 2𝑥, 0 ). 
vii)𝑇: ℝ3 → ℝ defined as 𝑇(𝑥, 𝑦, 𝑧) = 0. 

 
                 
TYPE V(Verifying Rank – Nullity  Theorem): 

Verify the rank-nullity theorem for the following linear transformations:  
 
i. 𝑇: ℝ3 → ℝ defined as 𝑇(𝑥, 𝑦, 𝑧) = 0. 
ii. 𝑇: ℝ3 → ℝ2 defined as 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦). 
iii. 𝑇: ℝ3 → ℝ defined as 𝑇(𝑥, 𝑦, 𝑧) = 𝑥. 
iv. 𝑇: ℝ3 → ℝ defined as 𝑇(𝑥, 𝑦, 𝑧) = 𝑦. 
v.  𝑇: 𝑃2[𝑡]  → 𝑃2[𝑡]  defined as 𝑇(𝑓)  =  

𝑑𝑓

𝑑𝑡
. 

 
TYPE VI (Finding Matrices associated to Linear Transformations): 
 

i) Find matrix with respect to standard bases for the linear transformations given in TYPE III - i, ii, v, vi, 
vii. 

ii) Find matrix for the linear transformation given in TYPE III - iii with respect to basis {1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5}. 
iii) Find matrix for the linear transformation given by TYPE III - iv with respect to basis 

{(
1 0
0 0

) , (
0 1
0 0

) , (
0 0
1 0

) , (
0 0
0 1

)} . 

 
PROPOSITIONS: 

  
1. Prove that every basis of a finitely generated vector space is maximal linearly independent. 
2. Prove that every maximal linearly independent subset of a vector space is a basis of the vector space. 
3. Prove that every basis of a finitely generated vector space is minimal generating. 

4. Prove that every minimal generating subset of a finitely generated vector space is a basis of the vector space. 

5. Prove that any set of 𝑛 + 1 vectors in a vector space with 𝑛 elements in a basis is linearly dependent.  
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6. Prove that any two bases of a vector space have the same number of elements.  
7. Prove that any 𝑛 linearly independent vectors in an 𝑛- dimensional vector space forms a basis of the vector 

space. 
8. Prove that if 𝑊1 and 𝑊2 are vector subspaces of a vector space 𝑉 over ℝ then 𝑊1 + 𝑊2 is a vector subspace of 

𝑉.  
9. Prove that if 𝑊1 and 𝑊2 are vector subspaces of a vector space 𝑉 over ℝ then  

dim(𝑊1 + 𝑊2) = dim 𝑊1 + dim 𝑊2 − dim(𝑊1 ∩ 𝑊2). 
10. Let 𝑉 and 𝑊 be vector spaces. Let 𝑇: 𝑉 →  𝑊 be a linear transformation. Prove that 𝐾𝑒𝑟 𝑇 is a subspace of 𝑉 

and 𝐼𝑚 𝑇 is a subspace of 𝑊. 
11. Let 𝑉 and 𝑊 be vector spaces. Let {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 𝑉. Let 𝑤1, 𝑤2, … . 𝑤𝑛be any arbitrary vectors of 

𝑊. Prove that there exits a unique linear transformation 𝑇: 𝑉 →  𝑊 such that 𝑇(𝑣𝑖) =  𝑤𝑖 for 𝑖 =  1,2, … , 𝑛. 
  
MISCELLANEOUS: 

1. Find the linear transformation 𝑇: ℝ2 → ℝ2 such that 𝑇(1,0) = (2, 3) and 𝑇(0,1) = (3, 2).  
2. Find the linear transformation 𝑇: ℝ3 → ℝ2 such that 𝑇(1,0,0) = (2, 3) and 𝑇(0,1,0) = (3, 2) and 𝑇(0,0,1) =

(1, 2). 
3. If 𝑇: ℝ2 → ℝ  is a linear transformation such that 𝑇(0,1) = (1,2) and 𝑇(1, 0) = (1,4) then find 𝑇(2,3). 
4. Find a linear transformation 𝑇: ℝ2 → ℝ2 such that the matrix of 𝑇 wrt the standard bases is [

1 0
0 1

].     

5. Prove that any linear transformation maps zero vector to zero vector. 
6. Find the rank of the linear transformation 𝑇: 𝑃2[𝑡]  → 𝑃2[𝑡]  defined as 𝑇(𝑓)  =  

𝑑𝑓

𝑑𝑡
 using the rank-nullity 

theorem. 
7. What is the dimension of the zero vector space i.e., V={0}? Justify.  
8. Give a basis of the vector space ℝ over ℝ. Hence, write dimension of ℝ over ℝ. 
 

 
 


